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The dynamics of both the inviscid and viscous Taylor-Green (TG) three-dimensional 
vortex flows are investigated. This flow is perhaps the simplest system in which one 
can study the generation of small scales by three-dimensional vortex stretching and 
the resulting turbulence. The problem is studied by both direct spectral numerical 
solution of the Navier-Stokes equations (with up to 2563 modes) and by power-series 
analysis in time. 

The inviscid dynamics are strongly influenced by symmetries which confine the flow 
to an impermeable box with stress-free boundaries. There is an early stage during 
which the flow is strongly anisotropic with well-organized (laminar) small-scale 
excitation in the form of vortex sheets located near the walls of this box. The flow 
is smooth but has complex-space singularities within a distance cf(ct) of real (physical) 
space which give rise to an exponential tail in the energy spectrum. It is found that 
b(t) decreases exponentially in time to  the limit of our resolution. Indirect evidence 
is presented that more violent vortex stretching takes place a t  later times, possibly 
leading to a real singularity (6 = 0) a t  a finite time. These direct integration results 
are consistent with new temporal power-series results that extend the Morf, Orszag 
Rr. Frisch (1980) analysis from order t4* to order P o .  Still, convincing evidence for or 
against the existence of a real singularity will require even more sophisticated 
analysis. The viscous dynamics (decay) have been studied for Reynolds numbers R 
(based on an integral scale) up to  3000 and beyond the time t,,, at which the 
maximum energy dissipation is achieved. Early-time, high-R dynamics are 
essentially inviscid and laminar. The inviscidly formed vortex sheets are observed 
to roll up and are then subject to instabilities accompanied by reconnection processes 
which make the flow increasingly chaotic (turbulent) with extended high-vorticity 
patches appearing away from the impermeable walls. Near t,,, the small scales of 
the flow are nearly isotropic provided that R 1000. Various features characteristic 
of fully developed turbulence are observed near t,,, when R = 3000 and R, = 110: 

(i) a k-n  inertial range in the energy spectrum is obtained with n z 1.G2.2 (in 
contrast with a much steeper spectrum a t  earlier times) ; 

t Present address: CNRS, Observatoire de Nice, WNice, France. 
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(ii) the energy dissipation has considerable spatial intermittency ; its spectrum has 

Skewness and flatness results are also presented. 
a k - l f p  inertial range with the codimension ,u z 0.3-0.7. 

1. Introduction 
The fundamental dynamical mechanism involved in homogeneous three- 

dimensional turbulent flows is the enhancement of vorticity by vortex-line stretching 
and the consequent production of small-scale eddies. This process controls the 
turbulent-energy dynamics and hence the global structure and evolution of the flow. 
A prototype of this process is given by the Taylor-Green vortex (Taylor & Green 1937 ; 
denoted as TG below), which is perhaps the simplest system in which to study the 
generation of small scales and the resulting turbulence. 

The generalized TG vortex is that  three-dimensional incompressible flow that 
develops from the single-mode initial conditiont 

I 
I 

The flow discussed at length in this paper is that for which 6 = 0 in ( 1 . 1 ) .  I n  this case 
the initial flow has two-dimensional streamlines, but the flow is three-dimensional 
for all t > 0. We have made a preliminary study of the flow developing from ( 1 . 1 )  
with 6 = in, corresponding to an initially highly symmetric flow, which suggests no 
particular advantage over the TG choice 6 = 0 for the study of small-scale turbulence 
a t  late times. 

The flows that develop from the initial condition (1.1) have the Fourier represen- 
tation (Orszag 1974) 

v,(r, t )  = C C C u,(m, n, p ,  t )  sin mz cos ny cospz, ( l . 2 a )  

v,(r,t) = u,(m,n,p,t)cosmssinnycospz, (1 .2b)  

m o o 0 0  

m=O n=O p=O 

0 0 0 0 0 0  

m=O n=O p=O 

m o o m  

v,(r,t) = Z Z C u,(m,n,p,t)cosmzcosnysinpz,  (1.2c) 
m-0 n=o p=o 

where u(m, n, p ,  t )  vanishes unless m, m, p are either all even or all odd integers. The 
representation (1.2) is the basis for much of the ensuing analysis. The many 
symmetries of the TG vortex flow (see appendix A) can be verified from (1.2). 

I n  the past this flow has been used to study such questions as: (i) enhancement 
of vorticity by vortex line stretching (TG) ; (ii) approach to isotropy of the small scales 
(Orszag 1974) ; (iii) possible singular behaviour of solutions of the Euler equations 
(Morf, Orszag & Frisch 1980, denoted as MOF below) ; and (iv) high-Reynolds-number 
behaviour of energy dissipation (Orszag 1974). 

In  the present work we report additional studies of this flow, including new results 
t This initial condition differs from that of previous investigators, including TG and Morf, Orszag 

& Frisch (1980), by a shift of origin. It offers the advantage of the symmetric Fourier representation 
(1  2).  
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concerning: (i) the character of the inviscid flow; (ii) the analytic structure of the 
inviscid flow and the time development of energy spectra; (iii) analysis of high- 
Reynolds-number behaviour including results on the formation of an inertial range ; 
(iv) analysis of the geometry of the regions of high vorticity and, especially, of their 
intermittency ; and (v) possible differences between viscous and inviscid behaviours. 
I n  particular, we are able to report the first numerically computed three-dimensional 
inertial range which, although crude by experimental standards, is obtained directly 
from the Navier-Stokes equations without any turbulence modelling or other ad hoc 
hypotheses. 

It has been estimated (Orszag 1976) that  a computation of an inertial range like 
that observed in the high-Reynolds-number tidal-channel experiment of Grant, 
Stewart & Moilliet (1962) would be far beyond the power of both available and 
presently foreseeable computers. The present work has been possible because of the 
development of new algorithms that take advantage of the symmetries of the TG flow 
(see appendix C). It has allowed us to reach a range of scales and Reynolds numbers 
where scaling behaviour characteristic of fully developed turbulence begins to be 
manifested. 

In  Q 2, we describe heuristically the early-time evolution of the inviscid flow. Then 
the quantitative behaviour of the inviscid flow is discussed using direct numerical 
solutions of the Navier-Stokes equations ( Q  3) and series-analysis methods ($4). I n  
$5,  the character of the viscous flows is analysed, including such diagnostics as energy 
spectra. In  $6, the nature of intermittency and dissipative structures in the flow is 
investigated. Finally, in 57 we discuss the appearance of spatial chaos in the 
high-Reynolds-number flow. Some details of our methods are discussed in the 
appendices. 

2. Early-time behaviour of the inviscid flow 
The symmetries of the TG vortex are listed in appendix A. Here we emphasize only 

those that help to visualize the qualitative features of the flow and those that may 
be important in making this flow atypical of general three-dimensional flow. First, 
for all times, no fluid crosses any of the boundaries x ,  y or z = nn, where n is an integer. 
Therefore the flow can be visualized as flow in the box 0 < x ,  y ,  z < n with impermeable 
stress-free faces. I n  the following discussion, the region 0 < x, y ,  z < n is termed the 
impermeable box, as i t  confines the flow, while the region 0 < x ,  y ,  z < 2n is termed 
the periodicity box, as i t  reflects the periodicity of the Fourier series (1.2). Also, because 
of the symmetries listed in appendix A, the flow at any point in space can be inferred 
from its values in the fundamental box 0 < x, y, z < in. 

Secondly, if near each face we write the velocity field in terms of components 
parallel or perpendicular to the face, i.e. u = u,, + vl, then ul and au,,/an vanish on 
the face. This implies that  the vorticity on each face is normal to that face so it may 
be written w = @, where fi  is the unit normal. Note that g must vanish on all edges 
of the box where faces meet. I n  contrast, a general incompressible flow will have only 
isolated points of vanishing vorticity. (Both velocity and vorticity also vanish for 
all time a t  the centre x = y = z = in.) 

Thirdly, the vanishing of ul and au,,/an on each face also implies that the tensor 
V v  is partly diagonal. One principal axis of the strain rate or symmetric part of this 
tensor is then perpendicular to the face. Furthermore, the magnitude of the strain 
rate along this axis determines the fractional growth rate of the normal vorticity on 

the face, i.e. d 
% = - - ~ r * v  --lnlcl. 
an ‘I - dt (2.1) 

14-2 
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FIGURE 1 (a). For caption see facing page. 

t=  0 
2 

Here and in the remainder of this section, zero viscosity is assumed. It follows from 
(2.1) that (, on each face, satisfies the local conservation law 

and the global conservation law J'CdA = constant. Also, < a t  t = 0 vanishes only on 
the edges. Therefore the sign of the conserved quantity 6 is a constant of motion. 

Fourthly, there are global restrictions on the TG flow that are quite special. For 
example, the total helicity ~ u * o  dx vanishes for all time. Also, the vortex lines, defined 
by dx/ds = o(x(s), t ) ,  are closed and unknotted curves in the inviscid flow. General 
three-dimensional flow leaves room for considerably more complicated topologies 
(see $7) .  

Most of our discussion of the real-space dynamics will be confined to the flow on 
and near the faces of the impermeable box, which by symmetry need only be the 
bottom face, z = 0, and one of the side faces, say y = 0. Indeed, computation of the 
flow shows that most of the 'action' in the flow for early-to-moderate times ( t  5 4) 
occurs near these faces. 

Simple dynamical considerations determine the qualitative features of the flow on 
the faces of the impermeable box. In particular, the initial vortex on the bottom face 
is forced by centrifugal action to spiral outwards toward the edges and then up the 
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FIGURE 1. A plot of the velocity and vorticity a t  t = 0 (a )  and t = 2 ( b )  on the y = 0 and z = 0 faces 
of the impermeable cube of the inviscid TG vortex. Vectors indicate the velocity field (which lies 
in the plane of the plot) while solid lines are contours of constant strain rate V * q  and total vorticity 
w2, as indicated in the figure. The initiai vorticity on the z = 0 plane is { ( t  = 0) = 2sinssiny; it 
decays a t  the centre of this face from its value 6 = 2 a t  t = 0 to 5 = 0.8 a t  t = 2. On this face w2 = e;  
contours are equally spaced in w2. On the y = 0 face the initial vorticity is { = sin J: sin z ;  its value 
a t  the centre grows from 5 = 1 a t  t = 0 to 5 = 1.7  a t  t = 2. The strain rate V * u l l  on the z = 0 face 
has changed from identically zero a t  t = 0 to a low of -0.833 a t  the corners and a high of 0.723 
a t  the centre at t = 2. On the y = 0 face the strain rate changes from - 1  < V'u,, < 1 at t = 0 to 
- 1.75 < V*ull < 0.94 a t  t = 2. The centre of the y = 0 face has become a point of convergence, 
-V.v l ,  = 0.53 a t  t = 2.  The labels L and H indicate lows and highs respectively of V * u l , .  

side faces (see figure 1).t The initial vorticity maximum a t  the centre of the bottom 
face decreases in time because of the consequent horizontal divergence of the flow 
(see (2.1)). New vorticity maxima appear close to the edges, where they build up 
dramatically because of the large strain-rate tensor there. (The vorticity must remain 
zero a t  the edges, but large gradients are not excluded.) A corresponding outflow on 
the top face and downflow from the top edges onto the side faces leads to a 
convergence of fluid near the horizontal centreline of each side face, from where i t  
is forced back into the centre of the box and subsequently back to the top and bottom 

t Without pressure effects and/or the z-variation of the initial conditions ( l . l ) ,  the initially 
two-dimensional TG flow would remain two-dimensional for all time. 
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FIQURE 2. Velocity fields and contours of constant V'u, ,  and w2 for the inviscid TG vortex a t  t = 3 
and 4. Only portions of the z = 0 and y = 0 plane are shown; the flow in the remaining areas can 
be obtained by rotation about the centre of the faces indicated by the large crosses. The divergence 
V.ull a t  the centre of the z = 0 face continues to grow; it reaches 0.82 at t = 3 and 0.841 at  t = 4. 
Similarly, the convergence a t  the centre of the y = 0 face increases to 1.09 a t  t = 3 and 4.17 a t  t = 4. 
Because of the choice of level curves, a very narrow vortex sheet running through the centre of 
the y = 0 face has been lost from view at t = 4. 
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faces. The vorticity on the side faces is efficiently produced in the zone of convergence, 
and builds up rapidly into a vortex sheet (see figure 2).  A simple model of this 
phenomenon is given in appendix D. 

These considerations determine the dominant features of the flow correctly for 
times up to  about 4. Some clues to the later behaviour of the inviscid flow can be 
obtained just before our calculations (that use up to 256 x 256 x 256 Fourier modes) 
lose accuracy. As may be seen from figure 2, the vortex sheet that appears in the plane 
y = 0 becomes stronger in time and apparently becomes unstable for t 2 3 to an 
instability (perhaps like Kelvin-Helmholtz instability) near (z, z )  = (0.2,0.6) 7c and 
(0.8,0.4) 7c. Por t  near 4, the circulatory flow that develops near these unstable regions 
decreases the convergence there due to centrifugal action and this forces an enhanced 
convergence near the plane’s centre x = z = in. We find (cf. figure 2) that the 
maximum strain rate -V*v l l  on the plane y = 0 increases from about 2.3 for t z 3, 
to about 4.7 for t x 4, showing a halving of the characteristic evolution time of the 
flow. As t increases beyond 4, there seem to be local vorticity maxima developing away 
from the walls of the impermeable box, suggesting the formation of new ‘daughter’ 
vortices in the interior and an exceedingly complicated flow structure. 

I n  this context we note that Chorin (1981) has recently reported numerical results 
for the inviscid TG flow using a discrete-vortex method. Chorin finds that the 
vorticity blows up in a finite time and the integral of its square seems to concentrate 
in a set of Hausdorff codimension ,u = 0.5. I n  this strictly inviscid case, the latter is 
not supported by our calculations (and the former only marginally at best) ; i t  may 
be that Chorin’s vortex scheme is actually making the flow slightly viscous (see 36). 

3. Analysis of the inviscid flow: direct integration by time stepping 
I n  333 and 4 we analyse the inviscid TG flow - in this 3 by solving the Euler 

equations using time-marching numerical techniques, and in 34 by analysis of 
high-order power series in time. First we review some earlier results. Series extra- 
polation methods have been applied to the TG vortex and other flows in order to study 
their analytic structure and to investigate the question of the existence of singularities. 
In  particular, evidence was obtained (MOF) that initially smooth, boundary-free, 
inviscid three-dimensional flow may become singular after a finite time. This would 
imply that vorticity could be stretched an infinite amount in a finite time. MOF 
analysed the temporal series of the ‘generalized enstrophies’, defined as the spatial 
mean-square derivative of order h of the velocity field, 

for the inviscid TG vortex flow. The series was calculated numerically to  O(t44).  This 
involves derivatives of the velocity field with wavenumber components k, ranging 
up to  k,,, = 23. The radius of convergence was found to  be determined by 
imaginary-time singularities a t  t2 z - 5. Thus analytic continuation was required to 
study the question of the existence of a real-time singularity. Pad6 approximants 
indicated the possibility of a singularity a t  t z 5.2 (cf. $4). 

The reliability of this method was subsequently studied for flow problems for which 
rigorous results are known (Morf et al. 1981). In  particular, for the inviscid Burgers 
equation, series-extrapolation methods correctly predict the location and nature of 
the singularity that represents the formation of shock waves. Also, for two-dimensional 
Euler flow, series analysis does not predict a real singularity, consistent with rigorous 
theorems (Wolibner 1933; see also Frisch 1983). 
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I n  this section, we study the reliability of the Pad6 analysis by the analyticity-strip 
method introduced by Sulem, Sulem & Frisch (1983), which has been previously 
employed to analyze two-dimensional magnetohydrodynamics for the existence of 
real-time singularities (cf. Morf et al. 1981 ; Frisch et al. 1983). In  this method, the 
time evolution of the spherically averaged energy spectrum E ( k ,  t ) ,  calculated as the 
band average 

E ( k ,  t )  Ak = 4 (~(k’, t ) l z ,  
keC(k)  

is analysed. We make use of the fact that  the large-k behaviour of E ( k ,  t )  is related 
to the width 6(t) of the analyticity strip of v(z,  t )  as a function of z = x + iy (x, y E [w3) 
which is determined by the singularity of v(z ,  t )  with smallest modulus min IIm zI = 6(t) 
(Sulem et al. 1983; Frisch 1983). For finite & t ) ,  the leading large-k behaviour of E ( k ,  t )  

(3.3) 
is exponential, as 

If, however, at some time t* the width 6 = 0, the flow develops a singularity in real 
(physical) space, and the leading behaviour of E ( k ,  t * )  is typically a power law : 

In E ( k ,  t )  - -2&t) k .  

lnE(k, t * )  - -n(t*)lnk. (3.4) 
I n  the latter case, Q,(t,) diverges for h > +(n(t*)- 1).  Thus, in order to study the 
question of finite-time physical-space singularities in the flow, it is useful to analyse 
the temporal behaviour of the analyticity-strip width 6(t) and to  determine whether 
6(t) vanishes a t  some finite time. This method has the great advantage that no actual 
analytic continuation is required. 

We have computed the temporal evolution of the spectrum by numerical integration 
of the three-dimensional Euler equations with the TG initial condition ( 1  . l )  using a 
full spectral (de-aliased pseudospectral) method (see appendix B). The calculations 
are done with different spatial resolution corresponding to maximum wavenumber 
components k,,, = 10,20,42 and 84 (which correspond respectively to 323, 643, 1283 
and 2563 spectral computations - see appendix B). This may be compared with the 
values k,,, = 23 in the O(tg4) series calculation (MOP) and k,,, = 41 discussed in 

In  figure 3 the spectrum E(k,  t )  is plotted for various t on a linear-log scale for the 
inviscid calculation with resolution k,,, = 84 ; averages are computed over spherical 
shells of width dk = 1 .  For early times, t < 1.5, the large-k behaviour is clearly 
exponential. However, in contrast with the results obtained in the two-dimensional 
magnetohydrodynamic problem (Morf et al. 1981), where logE(k, t )  is very close to 
an exact straight line, in the present case algebraic prefactors are clearly important. 

For later times, an unusual difference between the values for even and odd k 
develops. This seems to be due both to the spectral truncation and to the special 
symmetry of the Taylor-Green vortex that leads to significant excitation in structures 
localized near the impermeable walls (which are separated by IT). In  the following wc 
will always use averages over spherical shells with width Ak = 2 ,  which eliminates 
this particular even-odd asymmetry. 

In  figure 4 we plot the energy spectrum B(k,  t ) ,  both in linear-log and log-log scales, 
again using k,,, = 84. Also shown, as solid lines, are fits to the computed energy 
spectrum, using the assumed form 

These fits are obtained by least-squares fit of log E ( k ,  t )  with parameters A(t ) ,  n(t) and 
a(&). By (3.3), 8(t)  should be a measure of the width 8(k) of the analyticity strip of u(z, t ) .  

§4. 

E ( k ,  t )  = A(t )  k-n( t )  e-zJ(t)k (3.5) 
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FIGURE 3. The inviscid spectrum E(k ,  t )  defined by (3.2) with Ak = 1 and resolution k,,, = 84. The 
different symbols distinguish the spectra at equally spaced times from crosses a t  t = 0.5 to diamonds 
at t = 3.5 in steps of 0.5. 

For early times, the quality of the fit appears to be very good. However, for the 
two spectra a t  t = 3 and t = 3.5, the form (3 .5)  does not appear to fit the computed 
spectrum, whose large-k tail appears to decrease more slowly, possibly as the result 
of spectral truncation. 

In  table 1, we give the values of n(t) and 8( t )  obtained from these fits. Results from 
computations with Em,, = 42 and 84 are listed. For the fits, we use all values of E ( k )  
with 10 < k < 36 for the lower-resolution and 10 < k < 75 for the higher-resolution 
computations, with the constraint E(k ,  t )  > (which is the level of roundoff error). 
$’or t = 0.5, E ( k ,  t )  is fitted using 4 < k < 22. The results given in columns 2-5 are 
obtained from least-squares fits for all three parameters A ( t ) ,  n(t) and &(t ) .  Clearly 
for early times t < 2 the results for n(t) and 8( t )  do not depend significantly on the 
resolution. However, for later timcs the fact that  the logarithmic decrement 8( t )  
changes sign signals the breakdown of these computations. For the lower-resolution 
calculation this appears to occur around t = 2.5, while the higher-resolution compu- 
tation appears to remain reliable somewhat longer. 
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FIGURE 4. The inviscid spectrum E ( k ,  t )  as in figure 3 but with Ak = 2. 

Solid lines are the fits to (3.5) with the parameters listed in table 1 .  

We note that the logarithmic decrement a t  consecutive times has a nearly constant 
ratio 6(t)/&(t+0.5) z 2.4, which extends up to a time of t  = 2 for the lower-resolution 
and up to t = 2.5 for the higher-resolution calculation. From this we may infer that, 
a t  times t 5 2 .5 ,  S ( t )  varies,exponentially with time: 

S( t )  = 6, exp ( - t /T )  (3.6) 

with a relaxation time T z 0.57 and So x 2.6 (see figure 5) .  This corresponds to  a 
doubling of the exponential cutoff wavenumber 6-1 in a time interval At z 0.40. Of 
course (3.6) cannot be valid for very short times; some form of non-exponential 
transient must be present since at t = 0 only one mode is excited and hence 
6(t  = 0) = co. Additional consistency checks to determine better the range of validity 
of the exponential (3.6) are described below. 

I n  table 1 (columns 7 and 8) we also show the values for n(t) that result from 
a least-squares fit with prescribed values 6( t ) ,  given by (3.6) and tabulated in column 
6. The algebraic prefactor is characterized by an exponent n(t) which varies between 
5 > n(t) > 4 and appears to  approach 4 for long times. (It is possible that n(t) z 4 
reflects the essentially two-dimensional excitation near the walls of the impermeable 
cube. Quasi-two-dimensional inviscid dynamics are likely to produce surfaces across 
which rapid vorticity variations occur, resulting in a k-* spectrum (see Saffman 1971 
and s7)). It is interesting to note that, when prescribing S(t ) ,  the resulting n ( t )  varies 
only insignificantly with resolution. Also listed in columns 9 and 10 is the increase 
A a l a  (in per cent) of the standard deviation (r which results from prescribing the 
value of 8(t)  according to (3.6). As can be seen, at times t a t  which the computation 
is reliable, prescribing S ( t )  does not change the standard deviation appreciably. In  
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t 

0.5 
1 .o 
1.5 
2.0 
2.5 
3.0 
3.5 

S(t ) ,  n(t), A ( t )  fitted 8(t) prescribed 
Ar/u 

44 n(t) n(t) (prescribed) 

42 84 42 84 42 84 42 84 

1.107 1.107 4.31 4.31 I .  106 4.35 4.35 0 0 
0.461 4.68 4.61 2 10 0.453 0.451 5.02 5.14 

0.193 0.192 4.79 4.86 0.192 4.85 4.84 0 0 
0.080 0.080 4.48 4.50 0.080 4.48 4.50 0 0 
0.020 0.034 4.71 4.18 0.034 4.13 4.18 65 0 

-0.022 0.005 5.63 4.59 0.014 4.06 3.96 127 162 
-0.007 -0.002 4.51 4.56 0.006 3.94 4.04 23 35 

TABLE 1. Three- and two-parameter fit for energy spectrum E(k ,  t )  

0 

In 6 ( t )  

-2 

-4 

0 1 2 3 4 
t 

FIGURE 5 .  The time dependence of the width of the analyticity strip S in (3.5) from the data of 
table 1. Circles are based on fits with k,,, = 84; plus signs are obtained with kmax = 42. The 
horizontal line is the ‘effective’ resolution A = n/k,,, = to indicate the expected resolution 
limit of S(t ) .  The solid line is the fit (3.6) to the data. 

fact, a t  early times the relatively large values of 8( t )  do not allow us to separate the 
exponential and power-law terms accurately (cf. (3.5)). 

The latter result may also be seen from the results given in table 2 ,  which show 
the sensitivity of the least-squares fit to the range of k-values Kmin < k < K,,, that 
is used for the fit. Results are from the k,,, = 84 computation. Clearly, at early times 
t 5 1, the values of n ( t )  and 8(t) fluctuate significantly as Kmin and K,,, are varied. 
For 1.5 5 t 5 2.5 both n ( t )  and 8( t )  appear to be reasonably independent of the range 
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T Kmin Knmx n(t) W )  
0.5 9 16 10.80 0.85 

14 22 2.74 1.16 
1 .o 10 30 4.97 0.46 

24 44 4.12 0.47 
1.5 10 40 4.79 0.20 

25 55 5.21 0.19 
40 70 4.04 0.20 

2.0 10 40 4.43 0.08 
25 55 4.63 0.08 
40 70 4.34 0.08 

2.5 10 40 4.36 0.029 
25 55 3.99 0.036 
40 70 4.09 0.035 

3.0 10 40 4.87 -0.001 
26 55 4.1 1 0.01 1 
40 7 0  4.50 0.007 

3.5 10 40 3.79 0.014 
25 55 4.76 0.000 
40 70 1.09 -0.026 

TABLE 2. Sensitivity of fit to choice of Kmin and K,,, 

of Ic-values used for the fit. It is also in this regime that the exponential law (3.6) 
is best satisfied, 

We conclude that by spectral fitting alone and with the resolution available we 
cannot confirm the existence of a finite-time singularity in the TG flow. However, 
to make additional and more direct contact with MOF and $4, we present results for 
the temporal evolution of the enstrophy Q , ( t )  and its time derivative (d/dt)Q,(t) 
which have been computed for resolutions corresponding to K = k,,,, = 10, 20, 42 
and 84. Based on the observed behaviour (3.5) of the spectrum E(lc,t)  it is also 
possible to extrapolate these results to infinite resolution (kmax = 00). This has been 
done using the assumed form 

F ( m )  = F(K)+bK?epdK, (3.7) 

where F ( K )  stands for the resolution K-dependent values of Q , ( t )  or its time 
derivative. From the four values for K = 10, 20, 42, 84, the four parameters h,  m, 
d and F ( m )  can be determined. I n  tables 3 and 4, we list the values for Q,(t) and 
(d/dt)Q,(t) obtained in this way. Beyond t z 3.5 the latter cannot be extrapolated 
with confidence. Since our k,,, = 84 is considerably larger than the corresponding 
k,,, = 23 of MOP, their claim that an extrapolation tot  x 5 is possible is not supported 
by the present results. Indeed, a more realistic estimate of the maximum t that can 
be reached by the series method will be given in 54. 

In  addition, we are now also in a poskion to estimate, a posteriori, the maximum 
time tfor which our solution of the Euler equations for the TG flow should be correct 
in complete detail. Clearly we expect inaccuracies in the numerical results whenever 
S(t) 5 A ,  where A is the effective grid resolution given by A = ~ / k , , , .  If we use (3.6) 
as an approximation to the true S and set S ( t )  = A ,  we obtain t =  2.0 for kmax = 42 
and t = 2.4 for Ic,,, = 84 (see figure 5). If we use the more optimistic condition 
S(t) = + A ,  each t is increased by 0.4. I n  either case, our spectral fits are completely 
consistent with the assumption that (3.6) is valid for all times greater than 1.5: 
however, we cannot exclude the possibility that a crossover in the behaviour of the  
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t 

0 
0.25 
0.5 
0.75 
1 
1.25 
1.5 
1.75 
2 
2.25 
2.5 
2.75 
3 
3.25 
3.5 
3.75 
4 

10 20 42 84 

0.37500 0.37500 0.375 00 0.37500 
0.37745 0.37746 0.37746 0.37746 
0.38495 0.38495 0.38495 0.38495 
0.397 89 0.397 89 0.397 89 0.397 89 
0.41691 0.41691 0.41691 0.41691 
0.44287 0.44288 0.44288 0.44288 
0.47684 0.47686 0.47686 0.47686 
0.520 0 1 0.52016 0.520 16 0.520 16 
0.57360 0.57433 0.57435 0.574 35 
0.63866 0.641 14 0.641 29 0.641 30 
0.716 16 0.72254 0.72329 0.72333 
0.807 31 0.82070 0.823 17 0.82345 
0.91425 0.93866 0.94474 0.94593 
1.040 36 1.081 90 1.09436 1.097 82 
1.18988 1.261 42 1.286 7 1 1.29452 

1.57908 1.364 29 1.497 74 1.55829 
1.57009 1.82328 1.97494 2.06562 

TABLE 3. Extrapolation of Q , ( t )  to infinite resolution 

03 

0.37500 
0.37746 
0.38495 
0.397 89 
0.41691 
0.44288 
0.47686 
0.520 16 
0.57435 
0.641 30 
0.72333 
0.82347 
0.94608 
1.098 75 
1.29652 
1.58307 
2.157 98 

t 

0 
0.25 
0.5 
0.75 
1 
1.25 
1.5 
1.75 
2 
2.25 
2.5 
2.75 
3 
3.25 
3.5 
3.75 
4 

10 20 42 84 03 

0.000 00 0.00000 0.00000 0.000 00 0.00000 
0.01972 0.01972 0.01972 0.01972 0.01972 
0.04052 0.04052 0.04052 0.040 52 0.04052 
0.063 42 0.06342 0.06342 0.06342 0.06342 
0.08933 0.08933 0.08933 0.08933 0.08933 
0.11909 0.1 19 11 0.119 11 0:11911 0.119 11 
0.15344 0.153 62 0.153 62 0.1 53 62 0.153 62 
0.19274 0.19381 0.19383 0.19383 0.19383 
0.23667 0.24070 0.24089 0.24089 0.24089 
0.28448 0.29507 0.296 19 0.296 23 0.29623 
0.33626 0.35752 0.361 61 0.36198 0.361 99 
0.39432 0.42968 0.43984 0.441 73 0.441 87 
0.46352 0.51 7 40 0.53656 0.54245 0.54386 
0.54791 0.63550 0.66919 0.681 75 0.687 58 
0.64577 0.81410 0.892 82 0.91714 0.92033 
0.75680 1.097 84 1.325 26 1.432 50 1 
0.89657 1.535 13 2.05686 2.591 99 1 

TABLE 4. Extrapolation of (dldt) Q,(t) to infinite resolution 

flow might occur a t  a time t 2 3. I n  fact, we believe we have good indirect evidence 
that such a crossover does occur. 

The indirect evidence is predicated by our assumption that spatially and temporally 
slowly varying quantities are not dramatically affected by errors in high-wavenumber 
structure. For example, the strain rate or convergence - V - v  a t  x = z = an, y = 0 is 
determined primarily by the inertia in the large-scale eddies and not by the rapidly 
growing vorticity in the sheet structure near this point. The numerical values 
- W - v  = 0.53, 1.09, and 4.17 for times t = 2 , 3  and 4 respectively, as shown in figures 
1 and 2 ,  are accurate to a few per cent, based on comparing the results of (128)3 and 
( 2 ~ ? 6 ) ~  runs. A further reasonable assumption, which is confirmed by the model 
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calculation of appendix D, is that we can equate the fractional rate of increase of 
the vorticit,y with the fractional rate of decrease of the analyticity-strip width 8, That 
is, 

d 
v.ull z -In$. dt (3.8) 

We can thus 'derive' the exponential form (3.6) with a relaxation time T z (V-u,,l-l 
that  is weakly dependent on time. Given our numerical results for V-u , ,  we obtain 
T = 1.89, 0.92 and 0.24 for t = 2, 3 and 4. This corresponds to a doubling of the 
exponential cutoff wavenumber 8-1 due to this particular flow structure in time 
intervals At = 1.3, 0.6, and 0.2 This result should be compared with the estimate 
At = 0.40 obtained by fitting the spectrum of the complete flow field. 

I n  the evolving TG flow, there are several disconnected regions displaying 
small-scale activity. Each one is likely to  be associated with nearby complex-space 
singularities whose distance 8(t) from physical space has its own time dependence. 
At each time, the region with the smallest 8(t) dominates the asymptotically 
high-wavenumber spectrum, but the S(t) obtained by spectral fitting using (3.5) may 
reflect the influence of various regions yielding overlapping contributions in k-space. 
I n  particular, the result (3.6) for S(t) with 1.5 5 t 5 2.5 cannot reflect the influence of 
the high-strain-rate region near x = z = &, y = 0 for t > 3.5 if the above discussion 
of (3.8) is realistic. 

I n  summary, the inviscid time-dependent computations reported here show the 
early-time spectrum is well fitted by (3 .5) ,  that  the exponential decrement S( t )  
satisfies (3.6), and that the algebraic prefactor n(t)  decreases slowly towards 4 as t 
increases. However, we have indirect evidence that a more rapid decay of S must occur 
for t > 3.5. Finally, our resolution is not adequate to investigate the possibility of 
a real-time singularity in the flow for t 2 4. 

4. Analysis of the inviscid flow: power-series results 
With analytic initial data, the solution of the Euler equations for three-dimensional 

inviscid, incompressible flow has, a t  short times, a convergent power-series solution 
(Frisch 1983 and references therein) 

00 

u(r, t )  = Z t P u ( P ) ( r )  (4.1) 
p=o 

The u ( P )  can be obtained by recursion: 

where r = (x, y, z )  and 
(4.3) 

Equation (4.2) is derived by substituting (4.1) into the Euler equations for 
@/at )  (V x (V x u ) ) .  For the TG initial conditions ( 1 . 1 )  the modal decomposition (1.2) 
holds with the important simplification that u6Q)(rn, n, p )  is identically zero whenever 
m, n, or p > q+  1 .  Here we choose 6' = 0 in ( 1 . 1 ) .  Because of the even/odd 
decomposition of (1.2), the power-series coefficients u ( P ) ( r )  can always be deduced for 
all r in the periodicity box from their values in the fundamental box 0 < x, y, z < $n 
alone. Furthermore, if we specify viP) a t  N3 uniformly spaced points in this 
fundamental box, the M3 mode coefficients ui') with M = [ & ( P + 3 ) ]  can be obtaincd 
exactly provided that P < 2N-2. For 2N-2 < P 9 4N-3, the lowest M3 modes 
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ulP)(m, n , p )  with M = 2N- 1 -[@'I will still be given correctly, although the higher- 
order coefficients in which any of m, n, or p is greater than or equal to M are in error 
because of aliasing. However, aliasing is not a disadvantage for the calculation of the 
generalized enstrophy series (3.1). Indeed, the coefficients APT) involve velocity modes 
only in the form of products u(@(m, n, p )  . u(2r-@(m, n , p )  so they will be given correctly 
for r ,< 2N- 2. It is the realization of this very specific control on the effects of aliasing 
in the transform solution of the TG vortex that enables the present extension of the 
results of MOF. 

The outline of the new series solution is as follows. To generate the coefficients of 
tP in the expansion of v, and v,, we evaluate the four independent sums of products 
&), s!$, si?) and sy) a t  W points in coordinate space. Four Fourier transforms 
convert these sums to momentum space, and the M3 mode coefficients for each sum 
are then multiplied by the appropriate combination of momenta to  yield the M3 
contributions to u$P) and u i p ) .  Two more Fourier transforms yield u$') and v!P) back 
in coordinate space, and thus complete the order-tP calculation. 

The time for the entire calculation is dominated by the multiple-precision multiply 
operations as counted below. The four coordinate-space sums of products require 

4Wp multiplies at order t* or 4N3 p x 32N5-56N4 operations in total. The six 

Fourier transforms a t  order tP require 6(NM3 + N2M2 + W M )  multiply operations, 
where M is the minimum of [$(p  + 31 and 2 N -  1 -[&I. I n  total, this is 

4N-4 

p=o  

4N-4 

P-0 

6 X (N2M3+N2M2+N3M) z26N5+18N4. 

Finally, there are about 16M3 multiple-precision momentum multiplications (com- 
putation of r-derivatives of s@)) on the mode coefficients a t  order t P ,  or about 

4N-4 

P--0 
16 Z M3 x 16N4 

in total. If we ignore the small additional effort in the step of determining the 
generalized enstrophy, we obtain a final multiply count of nearly 58N5. For the 
present N = 21 or order-tsO calculation this is roughly 2.4 x los and required just 
under one hour of CPU time on the University of Guelph Amdahl V/5 computer with 
the available IBM Fortran quadruple precision (28 hexadecimal) facility. Note that, 
since the dominant multiplications occur naturally in vector form, considerable 
extension of the present series should be possible with the use of array processors 
(assuming the availability of efficient extended-precision utilities). 

The enstrophy expansion coefficients AiZr) are given in table 5 for h = 1 and 2. The 
number of significant digits was estimated by comparing runs with N = 19 us. N = 21. 
The loss of significance appears to be one half-decade with each other in t 2 ,  and the 
computer output in table 5 has been truncated a t  this rate. We believe each entry 
is significant except for the last two or three digits. 

We have concentrated our analysis on SZ,(t), which appears to be the most tractable 
of the series for Q,, h = 1 ,  . . . ,4 .  Pad6, Dlog Pad6 (Baker 1975), and first-order 
inhomogeneous differential approximants (Fisher & Au-Y ang 1979, 1980 ; Hunter 
& Baker 1979) suggest singularities a t  t2 = -4.65f0.05 and a t  t2 = 
(1.5 & 0.2) & (5.4 0.2) i. An additional singularity appears to be present a t  It2( x 15-20 
either on the positive real axis or as a nearby complex-conjugate pair. 

The uncertainty in the nature of this latter singularity is well illustrated in table 
6, in which we give a partial list of Pad6 approximants of SZ, together with all their 



r 0
 1 2 3 4 5 6 7 8 9 10
 

11
 

12
 

13
 

14
 

15
 

16
 

17
 

18
 

19
 

20
 

21
 

22
 

23
 

24
 

25
 

26
 

27
 

28
 

29
 

30
 

31
 

32
 

33
 

34
 

35
 

36
 

37
 

38
 

39
 

40
 

A
=

l 

0.
75

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
E

+
00

 
0.

78
1 

24
99

99
 W

9 
99

99
99

 99
9 9

99
 99

9 
99

9 9
5E

 -
 0 1

 
0.

59
 1 8

56
06

06
06

06
0 6

06
 0

60
60

60
60

60
60

1 E
 -
 02

 
-
 0.2

78
 43

60
64

 25
3 4

79
 7

73
 81

4 
70

2 0
44

 3
67

 1
 1 E

 -
 03

 
0.

61
04

82
 1

36
08

4 1
40

40
9 7

65
 89

54
74

 9
75

00
E

 -
 04

 
-0

.9
63

61
34

34
06

3 
79

09
69

96
08

01
 71

6 
79

83
03

 -
 05

 
0.

12
3 7

64
51

4 3
29

39
40

93
 37

7 
23

44
46

 17
6O

O
E

 - 
05

 
-0

.1
30

01
67

33
 9

94
 8

58
42

05
05

32
2 

30
7 

51
8O

O
E 
-
 06

 
0.

1 
15

 07
6 6

49
 40

2 
14

60
55

 1 1
 1 8

66
 28

8 5
20

O
O

E
 -
 07

 
-0

.4
06

 8
99

27
93

05
02

9 
18

7 8
12

 44
65

34
98

0O
O

E
 -
 09

 
-0

.1
57

 2
26

47
04

87
 1

74
47

22
82

04
7 

12
70

00
00

E
 -0

9 
0.

56
45

70
81

46
21

 42
30

00
09

59
23

 73
2 

50
00

0E
 -
 1

0 
-0

.1
36

96
92

87
 8

28
56

06
32

80
1 5

44
 15

3O
oO

O
O

E-
 

10
 

0.
29

92
01

 98
95

42
28

64
04

42
79

15
35

00
00

00
E

- 
11

 
-
 0.

61
99

19
63

1 8
33

 63
25

23
07

7 2
26

88
0O

O
O

O
O

E 
-
 12

 
0.

12
4 5

09
45

7 2
69

 1
31

 39
6 9

1 0
07

8 
82

00
00

 W
E

 -
 1

2 
-0

.2
47

 7
44

79
82

89
99

59
37

 71
45

28
7O

O
O

O
O

O
O

E-
 

13
 

0.
49

2 5
28

 4 
13

 40
3 3

08
 83

0 2
37

 7
48

 1
00

 00
0 

OO
E 
-
 1

4 
-
 0.

97
7 

19
0 4

18
 2

93
06

5 6
57

 4
54

 62
9O

O
O

 O
OO

OO
E 
-
 1

5 
0.

19
37

54
44

76
71

 06
1 0

44
29

04
37

00
00

00
00

E
- 

15
 

-
 0.

38
5 0

59
 90

8 
45

34
78

 52
7 

48
2 

13
0O

O
O

 O
OO

OO
E 
-
 1

6 
0.

76
70

12
87

2 2
68

61
6 

12
9 9

82
 7

00
00

00
00

00
E

 -
 1

7 
-
 0.

15
3 0

1 0
 6

96
 3

 18
 7

93
 4

82
 8

13
 50

00
00

00
00

0E
 -
 1

7 
0.

30
5 8

50
09

1 5
86

 37
2 6

56
 52

7 
30

00
00

00
00

0E
 -
 1

8 
-0

.6
12

79
38

60
47

17
04

33
16

38
00

00
00

00
00

0E
- 

19
 

0.
12

3 0
20

69
7 9

89
 92

5 3
15

 54
7 0

00
00

00
00

00
E

 - 
19

 
-0

.2
47

43
84

27
23

46
91

46
8 

12
00

00
00

00
00

00
E

-2
0 

0.
49

8 7
 17

 40
6 

62
8 5

45
 81

 1 4
40

00
00

00
00

00
0E

 -
 2 1

 
-0

.1
00

 7
1 2

33
3 

3 
19

35
83

84
50

0O
O

O
W

O
O

O
O

O
E

 -
 21

 
0.

20
3 7

39
33

9 7
23

48
34

44
 70

00
00

00
00

00
00

E
 -
 22

 
-0

,4
12

89
30

47
 1

48
58

4 ~
~~

O
O

O
O

O
O

O
O

O
O

O
O

O
O

E 
- 

23
 

0.
83

8 2
08

 74
2 

96
1 6

02
58

4 0
00

00
00

00
 O

OO
OO

E 
- 

24
 

-
 0.

1 7
04

34
 06

3 3
05

 1
 1 1

 1
60

00
00

00
00

00
00

00
E

 -
 24

 
0.

34
70

73
62

62
08

76
88

50
O

O
O

O
O

O
O

O
O

O
O

O
O

O
E

 -
 25

 
-0

.7
07

84
1 

76
1 
51

 13
70

4O
O

O
O

O
O

O
O

O
O

O
W

O
O

E-
 2

6 
0.

14
4 5

64
90

6 7
05

 69
2 

90
00

00
00

00
00

00
00

0E
 -
 26

 
-
 0.2

95
 64

1 
88

9 4
47

 0
75

00
0 O

OO
OO

OO
OO

OO
OO

OE
 -
 27

 
0.

60
53

80
 14

50
87

85
7O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

E 
-2

8 
-
 0.

12
4 

1 1
5 8

40
 1

70
 48

00
00

 OO
OO

OO
OO

OO
OO

OO
E 
-
 28

 
0.

25
47

61
 48

54
47

46
00

00
00

00
00

00
00

00
00

E
 -2

9 
- 0

.5
23

 51
 2

 2
87

 4
49

 6
00

00
00

00
00

00
o0

 0
00

00
E

 -
 30

 

T
A
B
L
E
 

5.
 C

oe
ff

ic
ie

nt
s 

A
lz

r)
 in

 t
h

e 
ex

1 

A
=

2
 

6 Q
, 

02
25

00
00

00
00

00
00

00
00

00
00

00
00

00
00

0E
 +
0

1
 

0.
85

9 3
74

99
99

99
99

99
99

99
99

99
99

99
99

95
E

 + 0
0 

0.
18

3 
53

45
64

39
39

39
39

39
39

39
39

39
39

39
2E

 + 
00

 
0.

17
80

70
23

20
75

54
00

89
 89

4 
15

6 8
79

80
2 7

7E
 -0

1 
0.

35
4 

51
7 

38
8 4

75
69

5 2
93

 20
2 

79
3 9

70
90

4 
10

E
 -
 02

 
0.

10
0 

98
90

65
02

7 2
51

 4
04

20
86

59
 76

2 
6

0
5

5
0

3
 -0

3 
0.

38
8 

23
4 

6 
19

 57
4 

91
 3 

14
3 1

40
96

9 7
 1

5 
18

50
0E

 -
 04

 
0.

22
36

80
45

02
7 1

 31
65

33
 84

3 
16

20
83

47
20

0E
 -0

5 
-
 0.

72
7 5

52
 6

66
 7 

12
 09

46
28

 46
3 3

64
 91

4 
13

00
0E

 -
 06

 
0.

30
0 

29
54

79
04

7 
11

50
92

 99
4 

80
58

59
42

0O
O

E
 -0

6 

0.
20

2 
13

82
36

95
56

22
41

63
71

 15
66

01
 90

00
0E

-0
7 

-
 0.

83
00

94
 69

40
72

 94
3 3

90
 1

49
46

90
66

90
00

0E
 -
 07

 

-
 0.

45
9 

36
90

59
 98

2 
22

40
85

 43
7 

0
3

0
4

0
8

o
o

O
~

E
 

-
 08

 
0.

10
0 

81
9 7

99
47

3 6
98

94
7 3

91
 20

98
92

O
O

O
O

O
E 
-
 08

 
-
 0.

2 
14

 05
5 

44
2 

07
56

96
 4 

10
 23

1 4
75

44
0O

O
O

O
O

E 
-
 09

 
0.

44
3 7

60
78

1 2
07

 1
57

92
07

47
23

46
70

0O
O

00
E

 -
 1

0 
-0

.9
08

09
46

38
60

35
30

78
1 

23
65

85
70

00
00

00
E

 -
 11

 
0.

18
37

86
34

1 3
83

82
2 

75
0 

10
50

19
O

O
O

O
O

O
O

O
E -
 1

1 
-0

.3
68

 2
46

 5
26

90
2 9

98
 25

99
09

 70
4C

tO
O

C
~.

m
oE

 
-
 1

2 
0.

73
3 4

35
54

09
69

 33
04

12
 9

42
80

1 O
OO

OO
OO

OE
 -
 1

3 
-0

.1
45

 5
20

 5
 1

 1 9
01

 24
1 9

7 
1 

13
0 7

2
0

W
W

0
0

E
 -
 1

3 
0.

28
76

56
53

65
71

 63
78

77
 39

28
60

O
O

O
O

O
O

W
E 
-
 1

4 
-0

.5
67

22
61

96
41

5 
17

07
35

77
98

00
00

00
00

00
E

 -
 1

5 
0.

1 
1 1

 75
4 

69
5 5

59
 96

3 8
8 

1 
94

05
oO

O
O

O
O

O
O

O
O

E 
-
 1

5 
-
 0.

22
00

75
O

O
30

62
 60

9 
4 

15
04

6O
O

O
O

O
O

O
O

O
O

O
E -
 1

6 
0.

43
3 3

17
 89
6 

39
55

82
 87

64
06

O
O

O
O

O
O

oo
O

O
O

E -
 1

7 
-0

,8
53

78
16

68
39

80
50

92
5 

19
00

00
00

00
00

00
E

- 
18

 
0.

16
84

21
 36

03
38

60
52

90
 72

00
00

00
00

O
O

O
0E

 -
 1

8 
-0

.3
32

65
08

27
 

1
1

3
4

9
6

4
9

0
7

0
0

0
0

0
0

0
0

0
0

0
E

 -
 1

9 
0.

65
8 0

47
 9

91
 7

20
09

6 4
26

 9
00

00
00

00
00

00
0E

 -
 20

 
-
 0.

1 3
0 

42
 1

 40
8 3

04
 38

50
35

 OO
OO

OO
 00

0 
OO

OO
OE

 -
 20

 
0.

25
89

85
30

64
96

91
76

84
G

fm
W

m
O

O
O

O
O

O
O

E
 -2

1 
-0

.5
15

28
4 

18
22

44
~8

05
0O

O
O

oo
O

O
O

O
O

O
O

E
 

-2
2 

0.
10

27
36

 1
91

 00
86

96
26

00
oO

O
00

O
O

00
O

O
00

E
-2

2 
-0

.2
05

 2
63

65
4 

43
9 

44
83

CM
lW

O
O

O
O

O
O

O
O

O
O

O
O

E -
 2

3 
0.

41
09

41
 24

98
41

 8
14

60
00

00
00

00
00

00
00

0E
-2

4 
-0

.8
24

 3
73

41
7 9

92
65

7 O
OO

OO
OO

OO
OO

OO
OO

OO
E -
 25

 
0.

16
57

07
 1

68
 14

0 1
51

 OO
OO

OO
OO

OO
OO

OO
OO

OE
 -2

5 
-0

.3
33

73
07

45
34

56
50

00
00

00
00

00
00

00
00

0E
 -

26
 

0.
67

3 3
77

 2
47

 0
38

 ~~
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
E 

-
 27

 
-0

.1
36

 1
16

93
39

12
60

0O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
E-

27
 

3a
ns

io
n 

(3
.1

) o
f 

Q
,(

t)
 



Small-scale structure of the Taylor-Green vortex 427 

Complex-t2 plane pole 
locations with (largt21 < f ~ )  Approximant 

18.94, 
20.53, 
31.32, 
31.12, 

20.05, 
19.95, 
18.50, 

- 

- 

16.58 f 11.33i 
15.84k7.891 
15.65 f 4.431 
15.66 f 4.45 i 
14.94+ 3.19i 
15.66 f 8.5Ci 
15.56f8.641 
14.29k7.353 
15.76f4.05i 

3.98 
3.16 
2.03 
2.04 
1.23 
3.32 
3.35 
3.91 
1.87 

TABLE 6.  Singularities and estimates of 52, from Pad6 approximants 

pole locations with Jargt21 < in. Since in most cases the poles shown in table 6 are 
also the poles furthest from the t2 plane origin, their almost ‘random’ position is not 
that  surprising. We believe that this ‘randomness’ is attributable to lack of 
information, i.e. the limited number of series coefficients available, rather than to 
roundoff error in the known series coefficients. This conclusion is based on our 
observation that approximants determined from 40 terms of the series typically 
predict the last, i.e. the 41st, term to 7-figure accuracy; we believe this coefficient 
has 3 more significant digits. 

Our lack of understanding of the unphysical singularitics of Q, seriously hampers 
our attempts to  deduce its analytic structure for real times. For example Pad6 ap- 
proximants represent SZ, near the negative real -t2 axis by a string of poles. The 
[21/19] approximant is typical, with pole locations at t2 = -4.75, -5.05, -5.59 and 
-7.75, suggesting that t2 x -4.7 is a branch-point singularity. However, Dlog Pad6 
approximants show similar structure (the typical approximant [21/18] has poles 
(residues) at t2 = -4.69(0.02), -4.91(0.03), and -6.25( -0.12)), so that a simple 
branch-point interpretation is not correct. Finally, inhomogeneous approximants 
suggest that  a branch point with analytic background is not correct either. We can 
certainly not exclude the very complicated confluent-type behaviour and natural 
boundary structure discussed by Chang et al. (1982) for a much simpler Hamiltonian 
system. In fact, such behaviour would explain our observation that all these analysis 
methods yield comparable results. 

In  figure 6 we plot estimates of d1nQA(t)/d(t2) given by various approximants. 
Notice that there is a divergence in the estimates for h = 1 beyond t 2  z 13. Approxi- 
mants based on the series limited to order t44 show divergence beyond t2 x 11. This 
latter divergence is not apparent in the diagonal Pad6 sequence studied by MOF ; 
we believe the present results based on both diagonal and near-diagonal Pad6 esti- 
mates give a more realistic view of the convergence of the method. Also, the numerical 
estimate of the maximum times t M 2/11 = 3.3 and t % d13 = 3.6 for which MOF and 
the present calculations for Q, are reliable show that for spatially averaged quantities 
there is no particular advantage in series methods compared to direct simulation. The 
same loss of resolution appears to limit both ealculations. Similar conclusions can be 
drawn from estimates of the generalized enstrophies Q,, with the additional results 
that  the believable t-range is more restricted for h > 1. 

The results of the present series analysis of Q, arc consistent with the time-integ- 
ration results presented in $3, a t  least for t 5 2.5.  In  particular, the present results 



428 M .  E. Brachet and others 

0.14 

1 d R ,  

R ,  dt2  
-- 

0.12 

0.10 

0.14 

1 d R ,  

40,  dtz 
-- 

0.12 

0.1c 

0.14 

1 dR, -- 
1652, d r 2  

0.12 

0.10 

’ t2 

FIGURE 6. Near-diagonal Pad6 and Dlog Pad6 approximants for the generalized enstrophies 
d lnQA/d(t2) defined in (3.1). For A > 1 ,  all curves are based on the full tS0 series presented in table 
5 .  For h = 1 ,  curves truncated a t  t 2  = 13 are based on the tg4 series of M O F ;  the remaining curves 
use the full tso series. The dashed curves for A = 1 are based on Pad6 and Dfog Pad6 approximants 
obtained after a conformal mapping is used to bring the positive real axis closer to the origin relative 
to the dominant unphysical singularities. No a priori preference can be given for the dashed va. 
solid lines; the differences are an indication of the accuracy of all the approximants. The large 
crosses for A = 1 are the extrapolated estimates given in tables 3 and 4 obtained from the 
direct-simulation results. 

for fz,/sZ, satisfactorily test the estimates of n(t) and 8( t )  given in tables 1 and 2. Also, 
as shown in figure 6 (a ) ,  the time-integration results for (d/d(t2)) Inn ,  are consistent 
with the series results for t 5 3.5. 

Finally, for times t 2 3.5 we can usefully combine the series results and direct- 
simulation studies to gain information which would not be credible when based on 
either method alone. In  particular, the Pad6 estimates of (d/dt)Q, a t  t = 4 shown 
in table 6 show such a wide variation as to  be virtually useless. Similarly, the 
direct-simulation estimates of (d/dt)Q, a t  t = 4 shown in table 4 could not be 
extrapolated with any confidence. However, if, as is reasonable to assume, the 
estimates of (dldt) 0, will continue to increase with increasing resolution, then we 
can conclude that only thosc Pad6 approximants that  diverge a t  t2  z 18-20 arc 
reasonable. This is the strongest evidence we have at present for a real-time 
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singularity and its possible time of occurrence t *  = 4.4f0 .2 .  Although the above 
argument) is by no means definitive, it does serve as an excellent example of the 
complementary nature of the time-series and time-marching techniques used here. 

In  summary, just as for the direct simulations discussed in $3, the Taylor-series 
method discussed here does not allow us to say with certainty whether a singularity 
develops at a time near 4 or, equivalently, whether vorticity can be stretched an 
infinite amount in a finite time. However, that both methods give consistent results 
even for such a sensitive quantity as dQ,/dt has been useful and we believe that 
extension of both methods to higher resolution should be explored since each has its 
relative merits. If the gross features of the flow that have been established by a time 
of 3 remain unchanged except for the development of a localized singularity. then 
the idea of extrapolating either local or average properties from exact Taylor 
coefficients is sound. Although we have not been successful in confirming MOF, 
somewhat longer series and/or more sophisticated methods of analysis such as, for 
example, those discussed by Baumel, Gammel & Nuttall (1981) might still work and 
be more efficient than direct simulation and also avoid the uncontrolled accumulation 
of errors due to modal truncation. On the other hand, if the flow develops into an 
infinite cascade of ever smaller vortices, the analytic structure of, say, i2,(t) must be 
very complicated, and no method of extrapolation from a finite number of  Taylor 
coefficients will ever work. Such a possibility is suggested by our observation that 
Pad6 approximanbs based on 40 terms in the series predict the 41st term to only 7-figure 
accuracy, implying considerable new information in this last coefficient not obtainable 
from the preceding terms (increasingly so as the order of the predicted term increases). 
Thus direct-simulation studies that allow for a visualization of the flow field might 
be the more useful technique. 

5. High-Reynolds-number behaviour 
Here we report results obtained by numerical solution ofthe viscous Navier-Stokes 

equations for the TG vortex flow. The Reynolds number is R = 1 / v ,  noting that the 
length and velocity scales of the initial flow (1.1) are order 1. While the inviscid runs 
cannot be extended accurately beyond t % 3, finite-R runs may be accurate for all time. 
As discussed in appendix B, a 256 x 256 x 256 (k,,, = 84) run is accurate for all but 
the smallest dissipation scales provided that R 5 3000. 

The time evolution of total dissipation ~ ( t )  = 2Q2,(t)/R is plotted ws. t in figure 7 
for 100 < R < 3000. The observed enhancement of mean-square vorticity Q,(t) for 
small times measures the strength of the nonlinear vortex stretching while the latc-time 
decay of ~ ( t )  reflects the overall decay of the flow by viscous damping. 

The results plotted in figure 7 show that the maximum enstrophy Qm,, is roughly 
proportional to R as R increases, since the corresponding maximum dissipation varies 
only weakly with R. The time t,,, at which the maximum of dissipation is arhieved 
has been previously observed to be approximately constant in the range 
100 < R 6 400 (Orszag 1974). Our new results indicate that a secondary maximum 
appears when R >, 500, leading to a shift in t,,, from roughly 7 to roughly 9. We have 
no evidence for further increase oft,,, as R increases, but, of course, this possibility 
cannot be excluded on the basis of our data. 

The small-scale structure ofthe TG flow undergoes aprofound change when R 2 500. 
A more sensitive measure of this change than the enstrophy is given by the bchaviour 
of the velocity spectral tensor 
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FTOFRE 7 .  Rate of energy dissipation t ( t )  (=  ZvQ,( t ) )  I X .  t for 1 0 0  < R < 3000. Xote  that the time 
t,,, of maximum dissipation is shifted from t,,,, x 7 for I< = 200 to t,,, x 9 at R = 3000. 

where ( 
isotropic turbulence, UaP(k) has the form (cf. Orszag 1977) 

) indicatcs an average over the fluctuations of u at wavenumber k. In  

wherv E ( k )  is the isotropic3 energy spectrurn. One of the basic tenets of thc statistical 
theory of turbulence is that ,  at sufficiently large 12, Craa(k) should become increasingly 
isotropic as k increases. 

The tendcncy towards statistical isotropy can be tested by plotting contours of 

( 5 . 2 )  

if isotropy holds, then IaP(k) is a function of k alone, so its contours for fixed k ,  should 
be circles in thc (k,, &,)-plane. Here UaP(k) is c*alculatcd by averaging u,(k) up( - k) 
over (tubes of side [&k,,,] centred a t  k in k-space. In  figure 8. we plot contours of 
I l l (k )  and 133(k) determined in this way for R = 400 and 3000 a t  t = 3, 7 ,  9 with 
k ,  = ik,,,. It is apparent that  both u, and u, have significant anisotropies at t = 3 
at both values of R .  At this early time, nonlinear interactions do not have t i z e  to 
overcwme thc strong anisotropy of the initial conditions (1.1). At t = 7 the flow is 
nearly isotropic for motlerately large k when R = 3000, but thercx are still significant 
anisotropies a t  large E ;  at R = 400 only u, has isotropizcd at t = 7. Bpparently the 
local maximum of Q,(t) for t z 7 for I( 5 400 is a false indication of the maturity of this 
flou . On the othcr hand. i t  is apparcnt from figure S ( f )  that the flow a t  R = 3000 
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R = 400 - 
42r- T- _- - 

2 42 

43 1 

FIGURE 8. Contour plots of Zll(k) (dashed) and Z33(k) given by (5 .2)  for R = 400 
at t = 3 (a ) ,  7 ( b ) ,  9 (c) and R = 3000 at t = 3 (d ) ,  7 ( e ) ,  9 ( f ) .  

at t = 9 is nearly isotropic at large Ic. In  contrast, the flow a t  II = 400 retains some 
anisotropy (for all t ) .  The result that the flow is isotropic for t x tmaX a t  R = 3000 is 
consistent with the results to be reported below on the inertial-range behaviour of 
the TG flow for R > 1000. 

Next we analyse spectra of the TC, flow at R = 1600 and 3000. Isotropic spectra 
are computed by summing over shells in Fourier space; the energy spectrum E ( k )  is 
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Time 

6.8 7.8 8.8 9.8 
Reynolds Fit 
number internal n P n P n P n P 

1600 10 < k < 80 3.29 0.0091 2.84 0.024 1.47 0.049 1.86 0.043 
1600 13 < Ic < 83 3.22 0.0108 3.00 0.020 1.59 0.045 1.98 0.039 
3000 10 < k < 80 3.20 -0.0019 2.71 0.003 1.73 0.012 2.03 0.009 
3000 13 < k < 83 3.14 -0.0062 2.68 0.003 1.72 0.012 2.02 0.009 

TABLE 7. Least-square fits to the energy spectrum 

given by (3.2) with Ak = 1, no oscillations being observed in these viscous runs a t  
high k when using this narrow-band averaging. 

For t 5 3, there is good agreement between the high-R viscous runs and the inviscid 
runs discussed in $3. At these early times, as R increases for fixed k ,  it  appears that 
the spectrum approaches the spectrum of the inviscid flow. I n  particular, E(E) be- 
haves exponentially with k as in (2.3), with 8(t)  close to the values given in table 1 .  

At later times, the high-R runs lead to nearly isotropic high-wavenumber spectra 
(cf. figure 8) in which the effect of the initial conditions ( 1 . 1 )  is largely forgotten. 
However, because of the limited Reynolds number of the runs, inertial and dissipation 
ranges have considerable overlap; it is not possible to run a t  considerably higher R 
because of the limited spatial resolution of our code. I n  order to extract information 
for such quantities as power-law exponents or dissipative wavenumber cutoffs, we 
have resorted to analysing the data in terms of an assumed functional form of E ( k )  
for moderate-to-large k .  As in $7 we fit logE(k) by a function of the form 

(5.3) 

By fitting E ( k )  in this way, we can separate inertial and dissipation range behaviour ; 
the form (5.3) allows a good fit to the spectrum for t 2 1 out to  well beyond tmax (z 9 
for R 2 500). 

I n  table 7 we give some values of the least-squares fit of n ( t )  and P ( t )  for 6 < t < 10 
for the runs at  R = 1600 and R = 3000. These fits are obtained using data from both 
13 < k < 83 and 10 < E < 80 with k,,, = 84. In  figure 9 we plot n( t )  'us. t for R = 1600 
and R = 3000. It is apparent that, near t = 8, n ( t )  drops quickly from a value of the 
order of 3 to a value close to 2. Similar behaviour of n ( t )  occurs for the run with 
R = 1600. Evidently as t increases toward t,,, there is a qualitative change in the 
character of the high-k spectrum, not inconsistent with the approach to high-k 
isotropy a t  these times (cf. figure 8). Also, i t  can be seen that n ( t )  has a minimum 
value close to the Kolmogorov value 1.67 which occurs near t,,, when the dissipation 
rate is maximum. 

I n  figure 10 we give plots of the (least-square) fitted energy spectra for R = 1600 
and 3000 at  t = 5 and t = 8.8 (z t,,,), both in linear-log and log-log coordinates. We 
note that /3(tmax) = 0.02_+0.01 for R = 3000, while P(t,,,) = 0.04f0.01 for 
R = 1600; if Kolmogorov-like scaling is present then /3 = /3,,(v3/,5)4 gives Po z 4. 

Theleast-squarefitsdescribcd abovegiveA(t,,,)/ef FZ 4, whichissignificantly larger 
than most experimental measurements of the ' Kolmogorov constant ', which give 
A / &  N 1.5. This serious discrepancy can be due to a variety of factors including: ( i )  
the moderate Reynolds numbers of our runs (even at R = 3000 the Taylor microscale 
Reynolds number R, at the time of maximum dissipation is only about 110); (ii) 

E(k,  t )  = A(t )  e-fl(t)kk-n(t). 
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FIGURE 9. Exponent n(t) of the algebraic factor ws. t in the spectral fit (5.3). The plus signs are for 
R = 1600; the circles are for R = 3000. The least-square fits are done over the wavenumber interval 
13 < k < 83. 

the special symmetries of the TG vortex flow; (iii) the high value of A / &  is correlated 
with a similarly low value of e(tm,,). Indeed, e(tm,,) x while the r.m.s. velocity 
v,,, x 0.25 and the longitudinal integral scale L, x 1.3 (cf. Orszag 1977) so the 
fractional energy dissipation per large-eddy turnover time 

t 

S L  

wrms 

3- N 0.7, (5.4) 

which is about a factor 2 smaller than observed in moderate-R, wind-tunnel 
experiments. The relatively weak energy dissipation of the TG vortex may be an 
indication that only roughly half the volume of the periodicity cube is actively 
involved in the small-scale turbulence when tmax x 9 (since e reflects small-scale 
activity but L, and v,,, do not). We return to this point later in this section and 
in $6 (cf. figure 14). Finally, (iv) our computed high value for the Kolmogorov 
constant A / &  may simply reflect the effects of intermittency on this constant and 
its consequent non-universality . 

From the spectral analysis just given, we conclude that the TG flow fort x tmax when 
R > 1000 does exhibit, a t  least crudely, inertial-range behaviour with a power-law 
exponent n = 1.9kO.3, which is weakly dependent on the Reynolds number, and a 
dissipative wavenumber cutoff that  is strongly dependent on R. 

Additional analysis of the flow has been done in terms of longitudinal skewness 
and flatness factors 

(5.5) 
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FIGURE 10. Plots of energy spectra E ( k )  us. k on linear-log and log-log scales: ( a )  t = 5 ,  R = 3000; 
(b)  t = t,,, z 9, R = 3000; ( c )  t = t,,, x 9, R = 1600. The solid lines are the least-square fits using 
the assumed form (5.3) over interval 13 < k < 83. 

where ( ) now indicates an average over (x, y, z )  throughout the spatial periodicity 
cube. In  figure 11, we plot 8%(r ) / f ln (0 )  for 3 < n < 6 for the run with IZ = 1600; we 
also plot the similarly normalized derivative-flatness factors g4(r)/g4(0) and 
~ q ~ ( r ) / & ( O )  constructed from av,/ax instead of v, in ( 5 . 5 ) .  From figure 11, we observe 
that the higher-order skewness and flatness factors are significantly localized near 
r = 0. 
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+ 0 ' t  r ct 2 O 
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+ i = 3  

PICURE 11. A plot of the normalized longitudinal skewness arid flatness factors ~ S ~ ( r ) / # ~ ( 0 )  (cf. (5.5)) 
77s. r for K = 1600 at t = t,,, % 9. (a) +, 8,; 0, 8, ( b )  +.  s,; 0, ( c )  +, g4; 0, g6. 

R 
200 (t = 7) 400 (t = 7) 800 (t = 7) 1600 ( t  = 9) 

*W) 0.45 0.61 0.47 0.65 

SS(0) 9.9 13.9 17.6 23.1 
L % ( O )  86 99 250 273 

S',(O) 6.8 6.7 8.8 10.0 

*?do) 1.4 x l(1" 2.4 x 1 0 3  I .4 x 104 1.9 x 104 
&(O) 18 17.26 - 15.6 

- &,(O) 773 823 660 

TABLE 8. Skewness factors (5.6-7) 

Thc values of X,(O) and kTn(O) are givcn in table 8: 
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0 2 4 6 8 10 

FIGIJRE 12. A plot of S,(0) given by (5.6) us. t for 200 < R < 1600. 
Also plotted is S,(0) for the inviscid (256)3 run, R = 00 (see $3). 

t 

I n  figure 12, we plot the skewness S,(O) vs. t for various R in the range 200 Q R Q 1600 
as well as R = co. I n  this last plot S,(O) is evaluated by the isotropic relation (cf. Orszag 
1977) 

where i3E(lc),Qt(,, is the contribution to  aE(lc)/at due to nonlinear interaction alone 
(i.e. i3E/atlNL = aE/at + 2ulc2E). 

Some comments are in order. First, from figure 12, we conclude that S,(O) is nearly 
independent of R for t 5 3. Secondly, there is an important qualitative change in the 
behaviour of S,(O) near 1 = 3 at large R. In  the inviscid flow i t  follows from (5.8) that 

so that if S,(O) is positive and does not approach zero rapidly for t x 4 then 52, would 
be singular a t  a finite time. Thus regularity of the Euler flow for all t would require 
a significant qualitative change in the behaviour of S,(O) shortly beyond the end of 
the inviscid curve in figure 12. Thirdly, for R = 1600 a t  t,,, the value of S,(O) calcu- 
lated by (5.6) is about 0.65, while i t  is about 0.71 as calculated by (5 .8) ,  again signify- 
ing the near-isotropy of small scales in this flow. The relatively high value S,(O) x 0.7 
a t  R = 1600 (compared with experimentally measured values S, x 0.4 at comparable 
values of R) may also be due to  the lack of significant turbulent activity in much of the 
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periodicity cube. Fourthly, the results given in table 8 show the rapid increase of Sn(O) 
and gn(0) with n, consistent with the strong intermittency of the flow. For example, 
the values S, x 0.7,  S, z 10 a t  R = 1600 are similar to the measurements of Kuo & 
Corrsin (1971) a t  R, x 1000. 

We conclude that there are significant features of the TG flow that mimic 
laboratory and geophysical flows a t  much larger Reynolds numbers. If this property 
persists to higher resolutions and Reynolds numbers, i t  may be possible to  infer the 
Reynolds-number dependence of skewness and flatness factors using 512 x 512 x 512 
or 1024 x 1024 x 1024 calculations of the TG flow, which should be accessible to the 
next generation of computers. 

6. Intermittency and dissipative structure 
Intermittency of the small scales of fully developed turbulence may cause 

deviations from Kolomogorov's original (1941) predictions for pure inertial-range 
quantities such as the energy-spectrum or velocity-structure functions. However, for 
such quantities we believe that any deviations that we may observe in our 
calculations are due much more to insufficiently high Reynolds numbers and/or lack 
of statistical averaging than to intermittency effects. 

Direct access to  intermittency is provided by analysing the fluctuations of the local 
dissipation. The local dissipation is defined as 

where 

Consider the fluctuations in the local dissipation 

C(r) = + ) - I ? .  

According to the original Kolmogorov theory, a t  inertial-range scales such fluctuations 
are expressible in terms of velocity fluctuations. These contribute a self-similar 
process of exponent + (Frisch, 1983). Hence the spectrum of dissipation fluctuations 
E,( k) is given, a t  inertial-range wavenumbers, by 

lZ6(k) N V' rd k!. (6.3) 

I n  contrast, according to the modified Kolmogorov (1962) theory, dissipation 
fluctuations may have long-range order, not related to velocity correlations, over 
distances much larger than the viscous cutoff scale I , .  The modified Kolmogorov 
assumption leads to scaling for the dissipation-fluctuation spectrum : 

E,(k)  - C2(kL,)-'+~. (6.4) 

Here L, is an integral scale and y is an exponent which in some models has a geometric 
interpretation as the codimension of a fractal (Mandelbrot 1976 ; Frisch, Sulem & 
Nelkin 1978 ; see also below). The codimension is the dimension of space (three) minus 
the dimension of the fractal. 

Note that the modified Kolmogorov expression (6.4) is by no means a 'deviation' 
from the original Kolmogorov expression (6.3). Indeed, the former goes to  zero with 
viscosity and not the latter. 
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FIGURE 13. A plot of the spectrum of dissipation fluctuations ~ ' ( r )  given by (6.5) for R = 3000 at 
t = 9. The solid line is a least-squares fit to  the assumed form (6.4) over the wavenumber interval 
11 < k < 83. The least-square result is p = 0.46 in (6.4). 

log k 

We have measured the spectrum of dissipation-fluctuations for the TG vortex. 
Since the rate-of-strain tensor eii is not readily accessible in the computer results, we 
used 

where o ( r )  is the vorticity. We note that e'(r) and e ( r )  have the same integral over 
space. What is used in experimental studies is neither c nor 8' but rather 

In figure 13 we plot in log-log coordinates the spectrum E,(k) for R = 3000 a t  t = 9;  
that is, near the time of maximum dissipation. At R = 3000 the high-wavenumber 

e'(r) = v d ( r )  (6.5) 

e"(1) = u(aw,/ax)2. 

tail is essentially a power law. A least-square fit of the kind described in §§3, 5, for 

p = 0.5k0.2. 13 < k < 83, gives 

This result is consistent with experimental data, which are reviewed by Monin & 
Yaglom (1975). I n  contrast, a similar plot a t  R = 1600 (not shown) has a very 
conspicuous dissipation-range exponential tail. 

A major advantage of numerical studies of intermittency is that we have access 
to the full spatial structure of the local dissipation v d ( r ) ,  whereas experimental 
measurements have had so far access only to the temporal structure (or, a t  best, to 
the one-dimensional spatial structure parallel to the mean flow). Contours of e'(r) in 
various planes of section a t  t = 9 for R = 3000 are shown in figure 14. It is apparent 
that there is significant turbulent excitation over only about half of the impermeable 
cube, consistent with the result (5.4) for the dimensionless diasipation rate. 

In figure 15 we give three-dimensional perspective plots of surfaces inside of which 
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FIGURE 14. Contour plots of local dissipation E' = vwz(r) for R = 3000 
at t = 9 in planes y = yo. (a )  yo = 0; ( b )  & x ;  (c) &t; (d )  &n. 

the vorticity is larger than some multiple yw,,, (0 < y < 1 )  of its maximum w,,, over 
the cube. The results for the inviscid run a t  t = 4.1 with y = $ (figure 15a) show the 
relatively simple topological structure of high-vorticity regions in the inviscid flow 
a t  this moderate time. The results for R = 3000 at t = 7 with y = (figure 15b) are 
somewhat more complicated topologically, while those for R = 3000 a t  t = 9.5 (y  = 4 
in figure 15c, y = 0.7 in figure 15d) are exceedingly complicated. Comparison of figure 
15(c) with figure 15(a, b)  shows that for the same y (here +) the volume enclosed is 
much larger and dispersed at  t = 9.5 than a t  the earlier times. Comparison of figure 
15 (d )  with figure 15 (6) shows that for fixed amplitude ywmax the enclosed volume is 
only slightly smaller a t  t = 7 than a t  t = 9.5 (as also follows from the similarity of 
GI a t  these two times), but the regions of high IwI are considerably more intermittent 
a t  t = 9.5. We mention that, while 52, only achieves its maximum a t  t w 9, wmaX 
reaches its maximum a t  the earlier time t x 7 for R = 3000. This may reflect the 
initial dominance of vortex stretching and enhancement before equilibrium turbulent 
structures evolve, and then the effect of finite Reynolds number in the generation 
of spatial intermittency. 

Visualizing small-scale activity by the strength of vorticity can have shortcomings. 
Indeed a large but nearly uniform vorticity may be solid-body rotation, which has 
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FIGURE 15. Three-dimensional perspective plots of surfaces in which Iw(r)l > yo,,,, where 
om,, = maxlw(r)l. (a) Inviscid run at t = 4.1, urnax = 18.3, yomitx = 9.2. ( b )  R = 3000, t = 7, 

w,,, = 33.7, yo,,, = 16.8. (c) R = 3000, t = 9.5, omax = 24.2, yomax = 12.1. ( d )  R = 3000, t = 9.5, 
omax = 24.2, yo,,, = 16.9. 

r 

a very strongly dispersive action and thereby inhibits the formation of small-scale 
structures. We remark also that, in numerical simulations of small-scale turbulence, 
Siggia (1981) found that the regions of high vorticity and of high rate of strain are 
not quite the same. 

It has been conjectured that in the limit v 4 0 all the dissipation concentrates in a 
fractal (Mandelbrot 1976). It then follows that E,(k)  follows a power law of the form 
(6.4), where p is the Fourier codimension (Kahane 1976). In our calculation a t  
R = 3000, power-law behaviour is obtained in the highest wavenumber octave. This 
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corresponds to roughly one mesh in physical space, so that we cannot expect to see 
any fractal-like structures. Furthermore, scaling for v $0 in Fourier space does not 
necessarily imply the existence of a limit (however weak) in physical space for 
unaveraged quantities, so generalizations of the fractal concepts may be required. 
Actually the only proven mathematical result relating fractals and high-Reynolds- 
number flow is the obtained theorem of Cafarelli, Kohn & Nirenberg (1981), which 
improves previous results by Scheffer (1975) : in four-dimensional space-time, the set 
of points where viscous flow is singular (with unbounded velocity) has Hausdorff 
dimension not greater than one. 

For the TG vortex with R < 1000, analyticity in the space variables, as evidenced 
by an exponential tail in the energy spectrum, is likely to hold for all times; thus 
the singular set may be empty. 

7. Time evolution of the viscous TG flow: the transition to turbulence 
I n  $85 and 6 we have concentrated on studying the flow near the time t,,, of 

maximum dissipation when it is most likely to display features of fully developed 
turbulence. 

At the highest Reynolds numbers used (R = 1600 and 3000), the flow remains 
essentially inviscid up to about t = 3.5. At such early times the energy spectrum has, 
over a substantial fraction of the wavenumber range, a power-law behaviour (see $3).  
The spectral exponent n is of the order of 4, much larger than the Kolmogorov value. 
At subsequent times the spectrum is somewhat shallower. The spectral exponent n, 
determined by least-square fit of the log of the energy spectrum, fluctuates around 
3 until about t = 8, when it quite suddenly drops to values not inconsistent with the 
Kolmogorov spectrum (see figure 9). 

To understand what is happening we have made extensive flow visualizations using 
two-dimensional sections and three-dimensional perspective plots. The run a t  
R = 1600 was used in order to get sufficiently smooth features of small-scale vorticity. 
The results are shown in figures 16-19. The following sequence of events is observed. 
The initial quasi-inviscid evolution leads to the formation around t = 4 of vortex 
sheets and daughter vortices as discussed in $2. Substantial roll-up of the vortex 
sheets has occurred by t = 5 ;  this flow pattern remains qualitatively unchanged 
through t = 6 (figure 16). Then, by t = 7, the rolled-up sheets undergo violent 
topological changes (probably involving viscous rearrangement of vortex lines). As 
a consequence very disordered high-vorticity patches appear in a substantial fraction 
of the impermeable cube. We then have a flow in which coherent vortex structures 
located near the walls of the impermeable cube coexist with very disordered 
high-vorticity patches away from the walls. The coherent structure itself finally 
breaks down around t = 8. The sudden change around t = 7 is also manifest in figure 
20, in which we plot, for various times, the maximum of the vorticity as a function 
of the distance to the walls. 

We observe that eventually the viscous TG flow will decay to zero at all Reynolds 
numbers because it is not subject to any forcing. Hence there cannot be any temporal 
chaos because this would require a non-trivial attractor as t --f 00. Nevertheless, a kind 
of transition to spatial chaos, controlled by the time parameter, seems to manifest 
itself in the high-Reynolds-number TG flow. A4t early times the flow is highly 
organized, i.e. ‘laminar ’ ; around t = 7 i t  becomes ‘turbulent ’, displaying a mixture 
of order and chaos! Note that we are here using ‘laminar’ and ‘turbulent’ as 
commonsense notions, postponing a more precise definition. 
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FIGURE 16. For caption see facing page. 
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FIGURE 17. Flow visualizations at  t = 7 .  ( a ) ,  (e)-(h) how vorticity contours in the planes q = 0, 
in, in, #a, in respectively. ( b )  shows velocity vectors and strain-rate contours in the plane y = 0. 
(c), (d )  are three-dimensional perspective plots as in figure 15 with y = 0.4, 0.6 respectively. Here 
R = 1600. 

Some tentative scenarios for this transition to turbulence are now given. The 
high-Reynolds-number and short-time behaviour is essentially inviscid. Up to about 
t = 2.5 the inviscid dynamics produce well-organized small-scale structures near the 
impermeable walls. Their characteristic scale S decreases exponentially, at least up 

FIGURE 16. Flow visualizations a t  t = 5 and t = 6. ( a )  and (f) (as in figure 1) give velocity vectors 
and strain-rate contours in the plane y = 0 at t = 5 , 6  respectively. (b) - (d)  and (g)-(i) give contours 
of vorticity in the planes y = 0, Bx, an respectively a t  t = 5 and t = 6. ( e )  and (j) are three-dimensional 
perspective plots of surfaces in which Iw(r)l > 0 . 4 ~ ~ ~ ~  at t = 5 ,  6. Here R = 1600. 
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FIGURE 18 Same as figure 17 except t = 8. 

to the time where i t  becomes comparable to the mesh of our simulation (figure 5 ) .  
After that  we are faced with two possibilities. 

( a )  Laminar inviscid flow - viscosity-induced instabilities 

In  the inviscid flow, the exponential flattening may go on forever. I n  the viscous case, 
the flattening will then proceed until stopped by viscous diffusion or by some 
instability. If viscous diffusion persists, the smallest attained scale 1 may be estimated 
by equating the e-folding time T z 0.57 (from (3.6)) and the viscous decay time 
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FIQURE 19. Same as figure 17 except t = 9. 

Thus, for v = (3000)-', flattening stops at a scale of a few meshes. On the other hand, 
a t  t = 9, we observe convoluted high-vorticity patches extending over much more 
than a few meshes (figure 14). We conclude that there may be viscosity-induced 
instabilities. The latter may then trigger inviscid instabilities leading by a sort of 
inverse cascade process to the observed inertial-range scales. 

( b )  Turbulent inviscid flow 
In  the inviscid flow there may be a genuine crossover to more violent behaviour 
involving Kelvin-Helmholtz or other inviscid instabilities, as discussed a t  the end 

15-2 
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FIGURE 20. A plot of the maximum vorticity w t ,  as a function of the distance from the walls of 
the impermeable cube for t = 1-9 (1). Here we compute over the faces of subcubes nested 
in such a way that  the distance from the nearest wall of the impermeable cube is d. Thus d = 0 
corresponds to the maximum vorticity on the faces of the impermeable cube while d = .@ 
corresponds to  the vorticity at the centre of this cube. Observe tha t  for early times the vorticity 
is concentrated near the walls of the impermeable cube. As t increases beyond 6, there is significant 
vorticity generation in the main body of the cube. 

of $2. Viscosity, as i t  comes into play, will prevent any singularities that might 
otherwise have formed ; viscosity may allow inviscidly formed structures to coalesce 
into larger ones; and may also induce new instabilities. 

Neither of the above scenarios agrees with the one immortalized in Richardson's 
version of Swift's poem, because the latter has inertial-range structures being formed 
by a cascade from larger to smaller scales. This may not matter, for Richardson did 
not mean to describe transient stages of decaying turbulence. 

It is of considerable interest to point out that  scenario ( a )  is actually taking place 
in high-Reynolds-number two-dimensional magnetohydrodynamic (2-D MHD) 
turbulence. In  2-D MHD flow, the exponential flattening process, near neutral 
magnetic-X points, is probably going on forever in the inviscid case, as evidenced by 
numerical simulations (at resolutions up to 5122) and by asymptotic expansions 
(Frisch et al. 1983). The resulting sheet-like structures are then subject to resistive 
tearing-mode instabilities leading to  the formation of magnetic islands (Furth, Killen 
& Rosenbluth 1963). At high R the resulting unstable flow is quite complicated, 
intermittent and turbulent. 

I n  the context of MHD, but in three dimensions, a definition of '  turbulence ' is often 
used that involves only the instantaneous topology of magnetic-field lines without 
any reference to the time variable. The topology is said to  be chaotic or turbulent 
if the PoincarB map (successive intersections of field lines with a transverse surface) 
is non-integrable or, equivalently, if field lines emanating from neighbouring points 
may diverge exponentially (as a function of arclength). A very simple example of 
topological turbulence is given by HBnon (1966). 
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Returning to the three-dimensional TG flow, we propose to carry over the above 
definition of topological turbulence? in terms of the vortex lines. The latter seem 
preferable to streamlines because the topology of vortex lines can change only by 
viscous reconnection. The TG flow is initially topologically laminar, because i t  has 
closed vortex lines and it remains so under inviscid evolution (as long as the flow 
is smooth). At early times, before appreciable small-scale structure has been 
generated, a small amount of viscous diffusion can make the flow topologically 
turbulent, but only slightly so. At later times violent reconnection may take place, 
possibly leading to strong topological turbulence. A quantitative measure of the 
strength can be based on Lyapunov exponents and Kolmogorov entropy (Benettin, 
Galgani & Strelcyn 1976). I n  this way, concepts that are generally used in connection 
with dynamical systems having only a few degrees of freedom may become useful 
for studying transition to fully developed turbulence, with time playing the role of 
the bifurcation parameter. 
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Appendix A. Symmetries of the TG flow 
The planes x, y, z = nx are stress-free and mirror-symmetric for all time and any 

values of 8 in the initial conditions (1.1). Given the flow inside the impermeable box 
a t  time t ,  one can determine the flow everywhere in the full periodicity box by 
reflection about these planes. For example, 

follows directly from the mode decomposition (1.2). In  addition, the flow within the 
impermeable box is invariant under rotations of IT about any of the three axes 
x = y = $IT, x = z = +IT, or y = z = in. For example, 

(A 2) 1 vz('x: - 5 ,  'x: - y, 2, t )  = -vz (x ,  y, 2 ,  t ) ,  

v,('x:-x, 'x:-y> z , t )  = -vy(x, y, z , t ) ,  

"J'x:--,IT-y,z,t) = vz(S,Y,Z,t) 

t 'Tohu-Bohu', which describes the early state of the Universe (Genesis l .Z) ,  might be a 
convenient substitute for 'topological turbulence '. 
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also follows from the mode decomposition (1.2) when explicit use is made of the 
restriction that m, n and p in any one mode differ by even integers. 

For special values of 8 there exist relationships among the expansion coeficients 
corresponding to additional symmetries within the impermeable box. For 8 = 0, 

u$) (m ,n ,p )  = ( - i ) r i l ~ f ) ( n , m , p ) ,  1 
u g ) ( m , n , p )  = ( - -1 )7+1~g) (n ,m ,p ) ,  J 

and the flow for all time is invariant under rotation by $ 7 ~  about the vertical axis 

(A 3) 

x = y = + K ,  i.e. 

For 8 = $ 7 ~  

and the flow within the impermeable box is now divided into four isolated volumes 
separated by mirror planes x = y and x = n-y. This symmetry in coordinate 
representation is 

Appendix B. Numerical methods and data management 
The Navier-Stokes equations 

av 
- = v x o - v @ + ~ ~ ) + v v ~ u ,  (B 1 )  at 

w - v  = 0, (B 2) 

where w = V x v ,  p is the pressure and v is the kinematic viscosity, are solved using 
spectral methods based on the special representation (1.2) truncated to 0 < m ,< M ,  
0 < n < N ,  0 ,< p < P.  The nonlinear terms are evaluated pseudospectrally taking 
advantage of all the special symmetries of the TG vortex listed in appendix A. For 
this purpose, a new odd Fourier transform algorithm was devised (see appendix C ) .  
For M ,  N ,  P that are powers of 2, the nonlinear terms are evaluated in order 
MNPlog, M N P  operations; all the symmetries are utilized so this evaluation 
proceeds 64 times faster and with 64 times less memory than would be required by 
a full complex Fourier-series representation of a general asymmetrical, spatially 
periodic flow. In  practice, our TG code runs about half as fast as a general 
pseudospectral code with BM x 4N x t P  complex Fourier-series resolution, and requires 
about 50% more data transfers. 

In  the text, runs with M = N = P = 128 are denoted (256)3 as the equivalent 
complex Fourier series involves (256)3 terms. While the representation (1.2) is a sparse 
spectral representation with many complex Fourier modes required to have zero 
amplitude, the ratio of largest to smallest wavenumber component is 128, the same 
as for a general (256)3 spectral code. The sparse spectral representation of the TG 
flow is a cheap and convenient way to get enhanced small-scale resolution; indeed, 
the TG code with (256)3 resolution is roughly equivalent to a (64)3 general spectral 
code as far as computational work and storage. 
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Time-stepping is done by second-order leapfrog differencing for the nonlinear terms 
and second-order Crank-Nicolson implicit differencing for the viscous terms. The 
pressure is eliminated by algebraic manipulation of the incompressibility constraint 
(B 2) in Fourier representation. The aliasing terms that result from the pseudospectral 
algorithm are removed by spectral truncation (Orszag 1971). With M = N = P, 
aliasing removal gives the largest wavenumber component k,,, z $M. With M = 32, 
k,,, = 20; with M = 64, k,,, = 42; with M = 128, k,,, = 84. 

Avariety of accuracy checks have been made. At R = 400, comparisons of spectra, 
generalized enstrophies (see (3.1)),  and skewnesses (see (5.6)) a t  tmax indicate that the 
(128)3 code gives results accurate to better than 1 Yo for all significant scales, while 
the (64)3 code has errors of order 5 %  and the (32)3 is in error by 20-50% at small 
scales. Assuming Kolmogorov scaling (in which the dissipation cutoff wavenumber 
scales as I8) holds approximately for R 2 400 (cf. §5), we conclude that the (256)3 code 
is in error by a few per cent at R = 1600 and by order 10% at R = 3000 a t  t,,,. 

Perhaps the most involved aspect of our code is its data-management scheme. For 
the (256)3 runs, each velocity component of the TG vortex involves 219 z 0.5 M 
independent real degrees of freedom. With the available memory of about 0.8 M words 
on the NCAR Cray-1, i t  is necessary to use secondary (disc) storage to supplement 
main memory. As our code uses a relatively novel data-management scheme to 
achieve both minimal data transfers and maximal data throughput, we outline the 
scheme briefly here. 

Data is segmented (blocked) in terms of the y- and z-coordinates of arrays; 
individual blocks are always complete in the x-direction. An individual block involves 
B, values in the y-direction, and B, values in the z-direction with the all-odd and 
the all-even Fourier components (and their contribution to physical space fields) 
segregated into separate arrays in the same block. Thus there are ( M +  2) B, B, real 
values in each data block. With the (256)3 code on the NCAR Cray-1, we choose 
Bu = B, = 17, so there are four blocks in each of the y- and z-directions. 

The code involves two stages. 
Stage 1 .  [(N+2)/2B,] blocks with fixed z are assembled to  form complete (z, y)- 
arrays. The data inputted to  this stage from disc are v,,v, and wy in the mixed 
spectral representation in which x and y are in Fourier representation while z is 
in physical representation. The data output from this stage to disc are (U x w ) ~ ,  
( u  x o), and VH*(u x o), where VH = (a/ax, a/ay, O),  in the same mixed represen- 
tation as on input. 
Stage 2. [(P+ 2)/2B,] blocks with fixed yare assembled to form complete (x, zf-arrays. 
Input fields are (u  x ( v  x a),, V,.(u x o) for the current time step, and v,, v, 
from the previous time for leapfrog time differencing; output fields are v,, v, and 
w, a t  the next time level. All data is stored in mixed spectral representation on 
disc. 
Asynchronous data transfer between disc and central memory is done using 4 

simultaneous data channels to achieve optimal data-transmission rates. Block (j, k) 
with 1 <j < [(N+2)/2B,], 1 < k < [(P+2)/2B,] is stored on a disc attached to 
channelj- k (mod 4) + 1 for stage 1 input and stage 2 output and k - j  (mod 4) + 1 for 
stage 1 output and stage 2 input. This scheme minimizes repositioning time. 

Some characteristics of the codes are given in table 9. 
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Block 
width Central Block Data transfers CPU 1/0 wait 

memory size per time step time/step time/step Typical 
Resolution By B, (lo6 words) (lo4 words) (lo6 words) (s) ( s )  time step 

2563 17 17 0.61 3.81 8.5 9.1 5 0.005 
t5123 11 11 1.51 3.15 63.4 84 45 0.002 

$1024a 26 26 13.9 34.9 488 75 40 0.001 

t With this choice of By and B,, the Cray-1 computer must have at least 2 x lo6 words of memory. 
$ Estimates for a hypothetical class V I I  computer (ca. 1985) with 16 M + words of memory, and 

CPU capability and 1/0 bandwidth ten times that of the Cray-1 computer. 

TABLE 9. Computer storage and timings 

Appendix C. Fast transform of odd Fourier series 

the discrete Fourier transforms 
The pseudospectral method for solution of the TG flow requires the evaluation of 

where xj = nj/2N (0 <j < N), as well as evaluation of their inverse transforms for 
a, in terms of A j .  Here N is a power of 2. The transform (C 1) and its inverse is 
immediately reducible to  a standard discrete cosine or sine transform that can be 
evaluated by a single fast Fourier transform on N points (see appendix I1 of Orszag 
1971). In this appendix, we explain how to reduce the evaluation of (C 2) and its 
inverse to a single fast Fourier transform on N points (rather than its obvious 
expression as a 2N-point transform). 

First we remark that AN = 0 with (C 2a) and A, = 0 with (C 2b), so there are only 
N independent results among Ai (0 <j d N ) ,  matching the N independent a, 
(0 < n < N). Next we introduce an by 

where 8 = + 1 for the cosine transform (C Za), while 6 = - 1 for the sine transform 
(C 2b). Then 

Next we set 
6, = azn (0 < n < N ) ,  

with a-, = ~ i , ~ - ~  and 
N - 1  

(0 <j < N ) .  

A .  3 = eixjBj+8e-ixjBN-j (0 <j < N ) ,  (C 7 )  

(C 6) B .  = bne2"iin/N 
n=o 

Then Bi can be evaluated by a single N-point fast Fourier transform. A little algebra 
then shows that 

with BN = B,. Equation (C 7) is derived noting that a2N-n = 8an-, (1 < n < 2N- 1). 
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The inverse transform to (C 2) is obtained by retracing the steps (C 3)-(C 7 )  in 
reverse. Thus, given Aj  (0 < j  < N ) ,  we define 

B. 3 2  = ~e-'x~u,+~ise-i"iA,-i (0 < j  < N ) ,  (C 8 )  

invert (C 6) for b, in terms of B j ,  and solve (C 5) for a,. 
The choice (C 5 )  for b ,  is not uniquc ; any expression of the form b, = G ~ ,  + CG,,-, 

with c += 1 works. Also if use is made of the facts that  cos (2n+ l)x/cosx and 
sin(2n+l)x/sinx are expansible in jinite series of terms cos2px, then the odd 
Fourier-transform algorithm can be dispensed with in favour of an even transform 
in the evaluation of (1.2) and its derivatives. 

Appendix D. A model of vortex-sheet growth 
I n  this appendix we describe a simple model for the inviscid growth of a vortex 

sheet which is qualitatively similar to the observed growth near the centre of they = 0 
face of the impermeable box. The crucial feature of the model is a variable convecting 
velocity field v, == h(t) sin 22 

describing convergence of fluid a t  z = hx, and a non-uniform convected velocity field 

(D 1 )  

satisfying 
av, a 
--+v,-vx = 0 
at aZ 

with v,(z, t = 0) = cos z. Equation (D 2) follows upon making a boundary-layer-like 
approximation in the zone of convergence near z = $I (see figure 2), after making a 
simple rotation to align this zone with the x-axis. From (D 2 )  it  follows that 

wx(z, t )  = V X ( Z O ,  0) = COSZO, (D 3) 

where z is the solution of the differential equation dz/dt = v, with initial condition 
z(t = 0) = zO. The solution tanz = eA tanz, with A = A(t )  = j:a(t') dt' gives 

wx = cos z(cos2 z + ec2A sin2 21-4. (D 4) 

For large times and z near in the vorticity is given by the strongly peaked and 

oy % - e -2A [ ( z  -$x)z+ e-zA1-8. (D 5 )  
growing function 

The width of the analyticity strip for this model solution is 6 z e-*, which, to the extent 
that a(t)  is only weakly dependent on time, varies exponentially with a halving time 
given by Ti % (ln2)/u = In2/(V-vli(. 
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